Connecting Waterpeople

fbh3: "La energía del agua"

1.781
4
(2)

Sobre el blog

Miguel Angel Monge Redondo
Ingeniero Técnico Agrícola por la UPM. Colegiado. Reconocimiento a una trayectoria profesional destacada CITAC 2018. Nominado mejor post premios iagua 2017.
1781

Temas

  • fbh3: " energía agua"

En la primera parte vimos cómo influía el caudal y la presión cuando se trasiega agua por el interior de las tuberías y la relación que existía entre caudal y velocidad del fluido.

En la segunda parte comenzamos a introducir el concepto de energía como impulsor para conseguir una presión determinada en el sistema y también para vencer las resistencias que se oponían al transporte del líquido. Estas resistencias quedaban identificadas principalmente por los rozamientos del agua en su fluir por el interior de las conducciones y por las diferencias de cota entre el punto de suministro y el punto de bombeo.

En esta tercera parte vamos a ver los tipos de energía que tiene el agua que circula por el interior de tubos a presión lo cual nos ayudará a entender la relación que existe entre las diferentes alturas de presión.

Tipos de energía en los fluidos

En hidráulica la energía se expresa como veremos en seguida en unidad de longitud, es decir en metros.

La ecuación de Bernouilli explica la ley de conservación de la energía trasladada al flujo de fluidos en una tubería: si no hay rozamiento, las partículas se desplazan a lo largo de la tubería sin pérdida de energía, indefinidamente.

La energía total en un punto cualquiera del fluido tiene tres componentes y es igual a la suma de tres energías:

1. La energía potencial debida a la altura sobre el plano de referencia y cuyo valor es

Eh = m·g·Z, donde m es la masa, g la aceleración de la gravedad y Z la cota o altura geométrica.

2. La energía debida a la presión del líquido:

Ep=p·m·g donde p es la presión ejercida por el líquido.

3. La energía cinética debido a la velocidad del fluido, v

Por tanto la energía total en un punto cualquiera de la corriente sería suma de estas tres energías: la potencial, la energía de presión y la cinética.

Ei= Eh+ Ep+ Ec

Dijimos que en hidráulica la energía se expresaba en unidades de longitud, es decir, en metros. Por tanto los tres componentes de la ecuación de Bernouilli son tres tipos de energía que en denominación hidráulica se refieren a tres tipos de alturas, que son las siguientes:

  • La altura geométrica Z o cota, debida a la posición que ocupa el líquido sobre el plano de referencia, en metros.
  • La altura debida a la presión p y que representa la altura de una columna de líquido capaz de originar por su peso una presión p en metros de columna de agua.
  • La altura cinética debida a la velocidad que, transformada, quedaría como v2/2g, y que representa una altura h desde la cual el fluido en caída libre alcanzaría una velocidad v.

Lo comentado se visualiza en el siguiente esquema:


 

Fig. 6 Representación de los tres tipos de energía de un fluido a presión.

 


En la figura 6 se representan los tipos de energía cuando el agua circula por el interior de la tubería a una determinada presión. Si instalásemos un tubo transparente en un punto de la tubería como se muestra en la figura citada, el agua alcanzaría una determinada altura. Esta altura es la energía de presión proporcionada por el equipo de bombeo y se mantendría constante mientras no cambiasen las condiciones. Si se detuviese repentinamente la corriente tras rebasar el tubo transparente, la energía del agua debida a la velocidad haría que la columna ascendiera, alcanzando el límite superior del tubo.

Según la ley de conservación de la energía si medimos la energía total entre dos secciones muy próximas de una tubería por la que circula un fluido tendríamos que:

E1=E2

Eh1 + Ep1 + Ec1 = Eh2 + Ep2 + Ec2

Sustituyendo:

(m·g·Z1) + (p1·m·g) + (m·v12 /2) = (m·g·Z2) + (p2·m·g) + (m·v22 /2)

Y dividiendo por m·g quedaría finalmente:

Z1+ p1 + (v12 /2g)= Z2 + p2 + (v22 /2g) = constante

La ecuación de Bernouilli nos indica que a lo largo de un flujo los tres términos pueden experimentar modificaciones por intercambio de unos valores con otros, pero siempre debe mantenerse la suma total.

Esta ecuación es sólo válida para dos puntos muy próximos. Como veremos a continuación, en toda transformación energética existe una degradación, que, en el caso que nos ocupa, la origina el rozamiento de la corriente de agua contra las paredes internas del tubo y que modifica por tanto la igualdad.

 

Línea piezométrica y línea de energía

Las partículas de agua en el interior de una tubería se mueven en trayectorias denominadas líneas de corriente. Según vimos en el apartado anterior, en relación con cada punto de una línea de corriente se pueden definir las siguientes cargas o energías específicas:

Carga piezométrica-estática (Ep), que agrupa a la energía de posición Z más la energía de presión p que transmite al agua un equipo de bombeo:

Carga cinética-dinámica (Ec), debida a la energía cinética o velocidad del fluido y cuya expresión es:

La carga total (Et) será entonces la suma de ambas cargas, la estática más la dinámica:

Fijémonos ahora en el siguiente esquema que representa un tramo de tubería que transporta agua a presión. Se han señalado dos secciones para visualizar en cada una de ellas cómo varía la energía total del fluido.


 

Fig. 7 Pérdida de energía en una conducción a presión.

 


La energía de posición Z no varía, ya que el tramo de tubería se mantiene en la misma cota con respecto al plano de referencia. La línea de energía cinética y la línea piezométrica sí varían, pues existe un rozamiento producido por el movimiento del agua en el interior del tubo que da lugar a una pérdida de carga o de presión h. La carga cinética en realidad no cambia, ya que el agua dentro del tubo mantiene la misma velocidad en ambas secciones. La caída de presión h afecta exclusivamente a la piezométrica.

Tras lo expuesto, la ecuación de Bernouilli debe quedar así:

Z1+ p1 + (v12 /2g)= Z2 + p2 + (v22 /2g) + h1-2

Y simplificando, como Z1 es igual a Z2 y v1 es igual a v2:

p1 = p2 + h1-2

p2 = p1 - h1-2

El nuevo término h1-2 representa las pérdidas de energía que se producen en la conducción entre las secciones 1  y 2. Este término se expresa también en mca y se conoce, ya lo sabemos, como pérdida de carga o pérdida de presión y se debe al rozamiento del fluido con las paredes del tubo.

Todas las formulas prácticas para el flujo de fluidos se derivan del teorema de Bernoulli, con modificaciones para tener en cuenta las pérdidas debidas al rozamiento.

La próxima semana volveremos a insistir en la relación caudal, presión y velocidad del agua, términos que suelen entremezclarse dando lugar, a veces, a erróneas interpretaciones.

Comentarios