Redacción iAgua
Connecting Waterpeople
ONGAWA
Centro Nacional de Tecnología de Regadíos (CENTER)
ANFAGUA
Ens d'Abastament d'Aigua Ter-Llobregat (ATL)
FENACORE
EMALSA
Minsait
Molecor
Fundación Biodiversidad
Terranova
Confederación Hidrográfica del Segura
ADECAGUA
LACROIX
CAF
ICEX España Exportación e Inversiones
MOLEAER
Asociación de Ciencias Ambientales
J. Huesa Water Technology
Xylem Water Solutions España
AGENDA 21500
Vector Energy
Sivortex Sistemes Integrals
TRANSWATER
TecnoConverting
Schneider Electric
Agencia Vasca del Agua
Aqualia
Prefabricados Delta
Arup
KISTERS
NTT DATA
GS Inima Environment
TEDAGUA
ACCIONA
Red Control
AECID
Catalan Water Partnership
Consorcio de Aguas de Asturias
Lama Sistemas de Filtrado
Sacyr Agua
Barmatec
Cajamar Innova
Fundación Botín
Rädlinger primus line GmbH
Hach
s::can Iberia Sistemas de Medición
Ministerio para la Transición Ecológica y el Reto Demográfico
ESAMUR
Laboratorios Tecnológicos de Levante
Consorcio de Aguas Bilbao Bizkaia
Autodesk Water
AMPHOS 21
DATAKORUM
MonoM by Grupo Álava
Almar Water Solutions
Aganova
Hidroconta
IRTA
Saint Gobain PAM
FLOVAC
IAPsolutions
Grupo Mejoras
Filtralite
Amiblu
SCRATS
Likitech
RENOLIT ALKORPLAN
Baseform
AGS Water Solutions
Fundación CONAMA
EPG Salinas
ISMedioambiente
Ingeteam
ADASA
HRS Heat Exchangers
TFS Grupo Amper
Global Omnium
Gestagua
SDG Group
Kamstrup
Ministerio de Vivienda, Construcción y Saneamiento del Perú
Esri
Idrica
Hidroglobal
Smagua
Siemens
LABFERRER

Se encuentra usted aquí

Un modelo de gestión de procesos con técnicas de Inteligencia Artificial

Sobre el blog

Miguel Ángel Rodriguez Núñez
Técnico de Inteligencia Operacional y SCI en Emasesa. Master en Ingenieria y Gestión del Mantenimiento. Master en Mantenimiento Industrial y Técnicas de Diagnóstico.
  • modelo gestión procesos técnicas Inteligencia Artificial

Las empresas que gestionan el ciclo integral del agua soportan una gran cantidad de procesos, a parte de los propios de su actividad, de índole diversa; gestión financiera, jurídica, económica, recursos humanos, medioambiente, marketing, calidad y operación y el mantenimiento, entre otros. Muchos de estos procesos son inherentes a la propia gestión del ciclo integral del agua, pero otros son transversales y de gran valor añadido, tanto unos como otros deben complementarse para que la eficiencia sea el objetivo último de la organización.

Es indudable que uno de los procesos más importantes dentro del mapa general es el de operación y mantenimiento. Este proceso, meramente industrial, debe de ser gestionado como tal, lo que nos hace enfocarlo de forma diferente al resto de los que le rodean. Tratamos distintos elementos (agua, lodos, residuos…), según reglamentaciones y especificaciones cada vez más estrictas, y entregamos un producto apto para el consumo humano o para su reutilización en distintos formatos, pero con el menor perjuicio posible para el medio ambiente y teniendo presente siempre los objetivos de sostenibilidad. Para lograr esto necesitamos políticas adecuadas de CAPEX, OPEX y gestión de activos que se trasladen posteriormente a los procesos a controlar. Estas políticas deben de ser estratégicas y adecuadas según los entornos cambiantes actuales y deben de ser trasladadas eficazmente en forma de objetivos hasta el último operario de la organización.

En la gestión industrial moderna, es necesario equilibrar múltiples objetivos, incluyendo seguridad, rentabilidad y entrega de valor al cliente. Con frecuencia estos objetivos son contradictorios, no están alineados entre departamentos o los que usan los gestores de una parte de la organización no coinciden con los que usa el personal de ingeniería y operaciones. Es fácil caer en la trampa de crear KPis adecuados para una unidad funcional, optimizando el área específica de responsabilidad, pero no alinearlos con los KPIs de otra unidad funcional o simplemente con un objetivo distinto al general de la organización. Todos los trabajadores de la empresa tienen o deberían tener objetivos vinculados a los objetivos corporativos. Estos objetivos deben de estar ajustados según el proceso específico y el nivel que cada trabajador ocupa en la organización.

En la gestión industrial moderna, es necesario equilibrar múltiples objetivos, incluyendo seguridad, rentabilidad y entrega de valor al cliente

Teniendo en cuenta este marco de trabajo, ¿cómo trasladamos los objetivos al trabajo diario de la organización? Desde mi punto de vista, necesitamos modelos de gestión adaptados a la descentralización y variedad de los procesos con los que trabajamos. Dentro de los diferentes modelos de gestión que existen y que se pueden aplicar a nivel de planta, propongo aplicar uno que nos permita gestionar las operaciones con una orientación centrada en objetivos organizacionales. El modelo en cuestión tendría forma de pirámide y en su base tendríamos los ya conocidos OEE, herramienta muy útil para conocer los tiempos efectivos de trabajo de un activo. Esta zona abarca a todos los activos físicos lo suficientemente sensorizados como para poder obtener la información que se necesita. Es la zona intermedia de operación, tendremos una gestión basada en KPIs específicos de operación, alineados con el negocio, que nos ayuden a monitorizar el rendimiento del proceso como tal. En la cúspide de la pirámide estarán los denominados SPI (indicadores de rendimiento sináptico), orientados al negocio y obtenidos en tiempo real, alineando la operación con los objetivos corporativos.

Los indicadores de rendimiento sináptico (SPI) fueron desarrollados por Yokogawa y KBC, se elaboran en los niveles de operación, ingeniería y gestión de la dirección de operaciones y se alinean y vinculan, mediante un conocimiento profundo de los procesos, con los objetivos de negocio de tal forma que todos los integrantes de la organización estén enfocados en uno o varios objetivos estructurales. Los SPI conectan de forma sistemática y transparente desde el nivel de gestión, el personal de ingeniería y los operadores de las distintas plantas de proceso, compartiendo un marco único que ayuda a la gestión a profundizar en los problemas relacionados con las operaciones donde la gestión integrada del rendimiento de nuestras plantas y procesos es fundamental para lograr una operación excelente.

Los SPI deben de estar monitorizados en tiempo real por un sistema SCADA que centralice toda esa información y permita que los operadores, técnicos y gestores de las distintas plantas o procesos puedan consultarla y prever su evolución a corto/medio plazo. Estos indicadores nos permitirán pasar de una gestión de procesos reactiva y correctiva a otra proactiva, predictiva y prescriptiva. Este ejercicio de predicción y modelización es el marco de implementación ideal de las técnicas algorítmicas de inteligencia artificial y en concreto del aprendizaje automático o machine learning.

Dónde entra la inteligencia artificial en este modelo de gestión

Hasta ahora, la aplicación de la inteligencia artificial en el campo de la gestión de procesos de las operaciones estaba prácticamente restringida al mantenimiento predictivo, los sistemas expertos y la modelización de procesos específicos en EDAR y ETAP. Para la optimización del resultado final, desde mi punto de vista, la verdadera integración de la inteligencia artificial en el proceso de operación se debe producir de tal forma que libere al operador experto de realizar todas aquellas tareas que no aporten un diferencial cuantificable a la gestión del proceso, y son muchas.

Para integrar la inteligencia artificial de forma óptima en la gestión de los procesos de operación y mantenimiento necesitaremos adecuar las distintas técnicas de machine learning a los datos de los que disponemos y los objetivos que perseguimos puntos de esta forma a nivel del operador. La inteligencia artificial nos puede ayudar a conectar a operadores, técnicos e ingenieros de proceso, enfocados en el tiempo real, con la gerencia de la empresa más enfocada en indicadores orientados al negocio a medio y largo plazo. En el caso de empresas públicas y semipúblicas, teniendo en cuenta que su finalidad no es la obtención de beneficio económico, sino más bien el equilibrio en las cuentas y la optimización del servicio que se presta al ciudadano nos permitirá llegar a la excelencia en la gestión de los activos y procesos. De esta forma elegiremos las técnicas de reducción de dimensionalidad PCA y SVM para aplicar a nivel de operación. Ambas técnicas no solo nos van a permitir reducir el número de variables que debemos de supervisar para asegurar el funcionamiento óptimo de los activos, sino que también nos facilitarán la detección de anomalías y modos de fallo. A nivel de ingeniería, el proceso estaría firmemente asegurado mediante las técnicas de árbol de fallos o sistemas basados en reglas (Sistemas Expertos) y yo conocimiento (CBR), estos sistemas han demostrado históricamente que, en procesos estándar, con pocas variables de decisión optimizan la gestión y la llevan a zonas de control óptimo.

La inteligencia artificial nos puede ayudar a conectar a operadores, técnicos e ingenieros de proceso, enfocados en el tiempo real, con la gerencia de la empresa más enfocada en indicadores orientados al negocio a medio y largo plazo

Por último, en la zona de gestión operacional son adecuados los modelos matemáticos de alto nivel. La interrelación de múltiples variables con casuística específicas necesita de modelos matemáticos bien armados, ligados a variables económicas, financieras y de sostenibilidad, que sean desarrollados por personal experto. Estos modelos no tienen por qué estar alojados en nuestra infraestructura o entorno de operaciones (red OT) sino que pueden estar desarrollados, mantenidos y alimentados en complejos sistemas on cloud que nos proporcionen los resultados que necesitamos, mediante una pasarela de interconexión convenientemente segurizada. Como vemos, cada nivel operativo necesita de algoritmo específico que se adapte a los objetivos que persiguen, los dos primeros pueden depender de personas de la planta, pero el último requiere de niveles de especialización más elevados para su desarrollo, mantenimiento y reajuste.

Para que la aplicación de estos algoritmos consiga lo que se persigue se deberá de disponer de un soporte centralizado en un sistema SCADA dotado de capacidad para aplicar en tiempo real estas técnicas. Este sistema deberá estandarizar los algoritmos en plantillas y aplicar sobre ellos los scripts necesarios. Esta estandarización nos permitirá poder realizar comparaciones de rendimiento no solo a nivel de planta, sino también entre distintas plantas o procesos. Al final, independientemente de que lo que se supervise sea una EDAR, ETAP, planta de compost, central hidroeléctrica, red de abastecimiento o saneamiento, pasos inferiors, etc., se trata de lograr la eficiencia en la gestión de activos y la inteligencia artificial es ya un aliado de gran importancia.

Suscríbete al newsletter

Newsletters temáticos que recibirás

Los datos proporcionados serán tratados por iAgua Conocimiento, SL con la finalidad del envío de emails con información actualizada y ocasionalmente sobre productos y/o servicios de interés. Para ello necesitamos que marques la siguiente casilla para otorgar tu consentimiento. Recuerda que en cualquier momento puedes ejercer tus derechos de acceso, rectificación y eliminación de estos datos. Puedes consultar toda la información adicional y detallada sobre Protección de Datos.