Connecting Waterpeople
Kamstrup
Almar Water Solutions
Amiblu
Fundación Biodiversidad
Danfoss
ONGAWA
Hidroconta
TecnoConverting
AMPHOS 21
NTT DATA
DATAKORUM
AGENDA 21500
s::can Iberia Sistemas de Medición
Grupo Mejoras
J. Huesa Water Technology
Catalan Water Partnership
Barmatec
ESAMUR
ISMedioambiente
Hach
Global Omnium
AECID
Red Control
Ministerio para la Transición Ecológica y el Reto Demográfico
VisualNAcert
NSI Mobile Water Solutions
AGS Water Solutions
Fundación CONAMA
MOLEAER
TRANSWATER
LACROIX
Vector Energy
EMALSA
GS Inima Environment
Confederación Hidrográfica del Segura
TFS Grupo Amper
Agencia Vasca del Agua
Gestagua
Consorcio de Aguas Bilbao Bizkaia
Regaber
Idrica
Molecor
Schneider Electric
Ingeteam
Mancomunidad de los Canales del Taibilla
Centro Nacional de Tecnología de Regadíos (CENTER)
Rädlinger primus line GmbH
SCRATS
Consorcio de Aguas de Asturias
HRS Heat Exchangers
Filtralite
Aqualia
RENOLIT ALKORPLAN
TEDAGUA
Asociación de Ciencias Ambientales
Sivortex Sistemes Integrals
ACCIONA
Saint Gobain PAM
ADECAGUA
Aganova
Terranova
Fundación Botín
Lama Sistemas de Filtrado
CAF
STF
Xylem Water Solutions España
Likitech
Sacyr Agua
KISTERS
EPG Salinas
ICEX España Exportación e Inversiones
Innovyze, an Autodesk company
Minsait
Baseform
FENACORE
Laboratorios Tecnológicos de Levante

Se encuentra usted aquí

Un nuevo modelo basado en inteligencia artificial permite ahorrar agua en los regadíos

  • nuevo modelo basado inteligencia artificial permite ahorrar agua regadíos
  • Un grupo de investigación de la Universidad de Córdoba ha desarrollado un modelo basado en técnicas de inteligencia artificial que es capaz de predecir cuánta agua usará cada regante. El sistema emplea algoritmos y redes neuronales para ayudar a una planificación más organizada de los suministros.

Sobre la Entidad

Agencia Sinc
El Servicio de Información y Noticias Científicas (SINC) es la primera agencia pública de ámbito estatal especializada en información sobre ciencia, tecnología e innovación en español.

La agricultura consume un 70% del agua a escala global y presenta una tendencia al ascenso en cuanto a necesidades hídricas. En este escenario en el que la demanda por parte de otros sectores de la industria también va en ascenso y los efectos del cambio climático influyen en la progresiva escasez de agua, las medidas de ahorro se presentan como un reto ineludible.

Este es el reto que ha asumido Rafael González, investigador del departamento de Agronomía de la Universidad de Córdoba (UCO), que ha desarrollado un modelo capaz de predecir con antelación el agua que demandará diariamente cada regante.

Según explica, “lo innovador del modelo reside en la aplicación de técnicas de inteligencia artificial como la lógica difusa, un sistema usado para explicar el comportamiento de toma de decisiones que, en este caso, mezcla variables más fáciles de medir como las agroclimáticas o el tamaño de la parcela de riego; con otras variables más complicadas como las prácticas tradicionales de la zona o las vacaciones durante la estación de riego”. 

El modelo FIS (sistema de lógica difusa, por sus siglas en inglés) traduce las variables de entrada (temperatura, humedad, etc.) al lenguaje en el que trabajan sus reglas. "Aplicando algoritmos genéticos se establecen las curvas óptimas de esos parámetros de entrada y, mediante redes neuronales, se establece la relación entre los mismos. Como resultado, se extrae la lámina de riego aplicado en la que se establecerá cuántos milímetros van a ser usados por cada regante", señala. 

El modelo capaz de predecir con antelación el agua que demandará diariamente cada regante

Esta herramienta trata de poner freno a la variabilidad de la demanda de agua. De esta manera, las comunidades de regantes podrán hacer una planificación más organizada y veraz de sus suministros, anteponerse a los problemas de adecuación de las estaciones de bombeo y organizar eficientemente las tareas de mantenimiento y arreglo de averías sin derrochar agua ni afectar a las zonas de regadío.

La posibilidad de adelantarse a las peticiones de agua permite también contratar el personal y la energía eléctrica que sean estrictamente necesarios, optimizando también estos recursos y ahorrando en costes económicos y medioambientales”, agrega el autor. 

Una herramienta basada en el conocimiento y en la información

La creación de esta herramienta se traduce en un cambio en la gestión tradicional de las comunidades de regantes, basada en el conocimiento y en la información. Frente a la manera de actuar anterior, fundada sobre la intuición o lo que se había hecho en otros años, ahora la comunidad cuenta con la información concreta. 

Pero, ¿de dónde se extrae toda esta información? En este caso, para determinar cómo el manejo diferente de cada cultivo puede influir en la exactitud del modelo, Rafael González ha utilizado los datos de las instalaciones de telecontrol de la comunidad de regantes del Canal del Zújar para los cultivos de maíz, arroz y tomate. De esta forma, la aplicabilidad de los sistemas de telecontrol y telemetría queda patente.

Mientras que, hasta ahora, los datos generados por esos sistemas se utilizaban básicamente para facturar los caudales consumidos por cada usuario de la red, con este sistema se utilizan todas las mediciones generadas para obtener las predicciones. Por tanto, el modelo ideado por González revaloriza los sistemas de medidas instalados en las comunidades de regantes, satisfaciendo tanto al personal técnico y de gerencia de las comunidades como a las empresas que innovan en el campo de la telemedida. Todo ello sin olvidar la labor de conservación del agua a nivel global.

Redacción iAgua

La redacción recomienda

25/01/2024 · Investigación

Las aguas subterráneas se agotan de forma acelerada en todo el planeta